Abstract

Antioxidant activity of cinnamic acid derivatives in presence of fatty alcohol in lard autoxidation

V.D. KORTENSKA-KANCHEVA*, N. V. YANISHLIEVA, K. S.. KYOSEVA, M. I. BONEVA, I. R. TOTZEVA

INSTITUTE OF ORGANIC CHEMISTRY WITH CENTRE OF PHYTOCHEMISTRY - BULGARIAN ACADEMY OF SCIENCES – SOFIA – BULGARIA

The effect of a model fatty alcohol (1-octadecanol, 1-OD) on the oxidation stability of triacylglycerols of lard (TGL) in presence of cinnamic acid derivatives (AH): [4-hydroxy-cinnamic (p-coumaric, p-CA), 3-methoxy-4-hydroxy-cinnamic (ferulic, FA), 3,5-dimethoxy-4-hydroxy-cinnamic (sinapic, SA) and 3,4-dihydroxy-cinnamic (caféic, CA) acids] has been studied at 100°C. The results obtained were compared with the data on the inhibited with 2,6-di-tert-butylated hydroxytoluene (BHT) and DL-a-tocopherol (TOH) oxidation. The oxidation stability of TGL in presence of 0.1 mM AH was found to decrease after addition of 40 mM 1-OD. To explain the effect of 1-OD on the inhibiting capacity of AH, the possibility of its interaction with AH, from one side, and with lipid hydroperoxides, from the other, should be considered. Taking into account the influence of 1-OD on the decomposition rate of TGL hydroperoxides (LOOH), it was found that the relative antioxidant efficiency of AH [RAE = DIPAR’OH/IPCR’OH = (IPAR’OH - IPCR’OH)/IPCR’OH; where IPAR’OH and IPCR’OH are induction periods in presence of lipid hydroxy compound for inhibited (A) and non-inhibited (C) processes, respectively] increases in presence of 1-OD in the sequence: p-CA > p-CA + 1-OD < FA > FA + 1-OD < SA < SA + 1-OD < BHT < BHT + 1-OD < TOH + 1-OD < CA < CA + 1-OD < SA + TOH > SA + TOH + 1-OD. A synergistic effect of the binary mixture SA + TOH (0.1 mM; 1:1), providing the highest oxidation stability of TGL, both in absence and in presence of 1-OD, has been observed.

Keywords: Antioxidants, cinnamic acid, 1-octadecanol, triacylglycerols of lard.

ATTIVITA’ ANTIOSSIDANTE DEI DERIVATI DELL’ACIDO CINNAMICO IN PRESENZA DI ALCOL GRASSO NELL’AUTOSSIDAZIONE DEL LARDO

L’effetto di un alcol grasso modello (1-octadecanol, 1-OD) sulla stabilità all’ossidazione di trigliceridi di lardo (TGL) in presenza di derivati di acido cinnamico (AH): [4-idrossicinnamico (acido p-cumarico, p-CA), 3-metossi-4-idrossi-cinnamico (acido ferulico, FA), 3,5-dimetossi-4-idrossi-cinnamico (acido sinapico, SA) e 3,4-diidrossicinnamico (acido caffèico, CA) è stato studiato a 100°C. I risultati ottenuti sono stati confrontati con i dati relativi all’ossidazione del lardo inibito con idrossitoluene 2,6-di-ter-butilato (BHT) e DL-a-tocoferolo (TOH). Si è notato che la stabilità all’ossidazione dei TGL in presenza di 0,1 mM AH diminuiva dopo aggiunta di 40 mM di 1-OD. Per spiegare l’effetto di 1-OD sulla capacità di inibizione di AH occorre considerare da un latola sua possibile interazione con AH e dall’altro la sua interazione con i lipidi idroperossidi. Considerando l’influenza di 1-OD sul grado di decomposizione dei trigliceridi idroperossidi (LOOH) si è trovato che la relativa efficacia antiossidante di AH [RAE = DIPAR’OH/IPCR’OH = (IPAR’OH - IPCR’OH)/IPCR’OH; dove IPAR’OH e IPCR’OH sono periodi di induzione in presenza di composti
idrossi lipidici per processi inibiti (A) e non inibiti (C) rispettivamente] aumenta in presenza di 1-OD nella sequenza: \(p-CA \rightarrow p-CA + 1-OD < FA \rightarrow FA + 1-OD < SA < SA + 1-OD < BHT < BHT + 1-OD < TOH + 1-OD < TOH < CA < CA + 1-OD < SA + TOH \rightarrow SA + TOH + 1-OD \). Si osservato un effetto sinergico della miscela binaria SA + TOH (0,1 mM; 1:1) generando la più alta stabilità all’ossidazione dei TGL, sia in assenza che in presenza di 1-OD.

Parole chiave: antiossidanti, acido cinnamico, 1-ottadecanolo, trigliceridi di lardo.

RISG n°2/2005, Pag. 87-92